Spatial assignment of test sample

December 08, 2016

Contents

Input 1
Isotope values of test sample ... 1

Output

Model ... 1
Map of best fitted reference sample .. 2
Best fitted reference entries .. 3
Testing robustness of assignment: Wilcoxon signed rank test 3
P-values for the k nearest neighbours in Wilcoxon Test 3
Goodness of fit of test sample: ... 4

Input
Website Identifier: 005p562-16

Isotope values of test sample

Table 1: Isotope values of test sample

<table>
<thead>
<tr>
<th>13C/12C</th>
<th>15N/14N</th>
<th>18O/16O</th>
<th>2H/1H</th>
<th>34S/32S</th>
</tr>
</thead>
<tbody>
<tr>
<td>-21.1</td>
<td>5.9</td>
<td>16.7</td>
<td>-48.9</td>
<td>10</td>
</tr>
</tbody>
</table>

Output

Model

##
Call:
train.kknn(formula = fmla, data = ivory.train, kmax = 15, distance = 2, kernel = knl)
##
Type of response variable: nominal
Minimal misclassification: 0.3765867
Best kernel: triangular
Best k: 15

Classifier: country_code
Map of best fitted reference sample

Best fitted reference sample:

- Site: Malawi, Kasungu
- Country: MW
- Region: Southern Africa
- CITES: Appendix I
- Lat: -12.91
- Lon: 33.13
Assignment of test sample to nearest neighbours

Best fitted reference entries

Table 2: Details of best fitted reference entry (row 1) and other fitted entries within best classifier

<table>
<thead>
<tr>
<th>lon</th>
<th>lat</th>
<th>location</th>
<th>13C/12C</th>
<th>15N/14N</th>
<th>18O/16O</th>
<th>2H/1H</th>
<th>34S/32S</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.13</td>
<td>-12.91</td>
<td>Malawi, Kasungu</td>
<td>-20.4</td>
<td>5.7</td>
<td>17.1</td>
<td>-52.3</td>
<td>10.4</td>
</tr>
<tr>
<td>33.13</td>
<td>-12.91</td>
<td>Malawi, Kasungu</td>
<td>-20.2</td>
<td>6.6</td>
<td>16.9</td>
<td>-51.4</td>
<td>10.4</td>
</tr>
<tr>
<td>33.13</td>
<td>-12.91</td>
<td>Malawi, Kasungu</td>
<td>-20.2</td>
<td>6.3</td>
<td>16.3</td>
<td>-47.3</td>
<td>11.3</td>
</tr>
<tr>
<td>33.13</td>
<td>-12.91</td>
<td>Malawi, Kasungu</td>
<td>-20.3</td>
<td>6.2</td>
<td>15.8</td>
<td>-51.9</td>
<td>11.4</td>
</tr>
<tr>
<td>35.33</td>
<td>-14.90</td>
<td>Malawi, Liwonde National Park</td>
<td>-21.5</td>
<td>6.2</td>
<td>15.6</td>
<td>-55.7</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Country of prediction: MW

Testing robustness of assignment: Wilcoxon signed rank test

If p-value > 0.05, the test concludes that the isotope signature of the test sample is similar to the respective nearest neighbour reference sample.

P-values for the k nearest neighbours in Wilcoxon Test

“1.000, 0.561, 0.400, 0.172, 0.026”
Goodness of fit of test sample:

- good fit: if $p > 0.05$ for at least two tested nearest neighbour reference samples;
- moderate fit: if $p > 0.05$ for at least one tested nearest neighbour reference samples;
- uncertain: if $p > 0.05$ for none of the tested nearest neighbour reference samples.

Assumption: At least two nearest reference samples are available.

Overall goodness of fit of test sample: “**good fit**”